Nonlinear gravity–capillary waves with forcing and dissipation
نویسندگان
چکیده
We present a study of nonlinear gravity–capillary waves with surface forcing and viscous dissipation. Based on a viscous boundary layer approximation near the water surface, the theory permits the efficient calculation of steady gravity–capillary waves with parasitic capillary ripples. To balance the viscous dissipation and thus achieve steady solutions, wind forcing is applied by adding a surface pressure distribution. For a given wavelength the properties of the solutions depend upon two independent parameters : the amplitude of the dominant wave and the amplitude of the pressure forcing. We find two main classes of waves for relatively weak forcing: Class 1 and Class 2. (A third class of solution requires strong forcing and is qualitatively different.) For Class 1 waves the maximum surface pressure occurs near the wave trough, while for Class 2 it is near the crest. The Class 1 waves are associated with Miles’ (1957, 1959) mechanism of wind-wave generation, while the Class 2 waves may be related to instabilities of the subsurface shear current. For both classes of waves, steady solutions are possible only for forcing amplitudes greater than a certain threshold. We demonstrate how parasitic capillary ripples affect the dissipative and dispersive properties of the solutions. In particular, there may be a significant deviation from the linear phase speed for gravity–capillary waves. Also, wave damping is strongly enhanced by the parasitic capillaries (by as much as two orders of magnitude when compared to the case with no capillary waves). Preliminary experimental results from a wind-wave channel give good agreement with the theory. We find a sharp cut-off in the wavenumber spectra of the solutions which is similar to that observed in laboratory measurements of short gravity–capillary waves. Finally, for large wave amplitudes we find a sharp corner in the wave profile which may separate an overhanging wave crest from a train of parasitic capillaries.
منابع مشابه
Nonlinear Dynamics of Three-Dimensional Solitary Waves
In problems of dispersive wave propagation governed by two distinct restoring-force mechanisms, the phase speed of linear sinusoidal wavetrains may feature a minimum, cmin, at non-zero wavenumber, kmin. Examples include waves on the surface of a liquid in the presence of both gravity and surface tension, flexural waves on a floating ice sheet, in which case capillarity is replaced by the flexur...
متن کاملThe equilibrium dynamics and statistics of gravity–capillary waves
Recent field observations and modelling of breaking surface gravity waves suggest that air-entraining breaking is not sufficiently dissipative of surface gravity waves to balance the dynamics of wind-wave growth and nonlinear interactions with dissipation for the shorter gravity waves of O(10) cm wavelength. Theories of parasitic capillary waves that form at the crest and forward face of shorte...
متن کاملSteep capillary-gravity waves in oscillatory shear-driven flows
We study steep capillary-gravity waves that form at the interface between two stably stratified layers of immiscible liquids in a horizontally oscillating vessel. The oscillatory nature of the external forcing prevents the waves from overturning, and thus enables the development of steep waves at large forcing. They arise through a supercritical pitchfork bifurcation, characterized by the squar...
متن کاملGravity wave turbulence revealed by horizontal vibrations of the container.
We experimentally study the role of forcing on gravity-capillary wave turbulence. Previous laboratory experiments using spatially localized forcing (vibrating blades) have shown that the frequency power-law exponent of the gravity wave spectrum depends on the forcing parameters. By horizontally vibrating the whole container, we observe a spectrum exponent that does not depend on the forcing par...
متن کاملSTABILITY ANALYSIS FROM FOURTH ORDER NONLINEAR EVOLUTION EQUATIONS FOR TWO CAPILLARY GRAVITY WAVE PACKETS IN THE PRESENCE OF WIND OWING OVER WATER.
Asymptotically exact and nonlocal fourth order nonlinear evolution equations are derived for two coupled fourth order nonlinear evolution equations have been derived in deep water for two capillary-gravity wave packets propagating in the same direction in the presence of wind flowing over water.We have used a general method, based on Zakharov integral equation.On the basis of these evolution eq...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1997